
ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 1

ABEYCHAIN YELLOW PAPER

ABEYCHAIN: MULTI-LAYERED BLOCKCHAIN

FOR HIGH-VOLUME TRANSACTIONS

Abstract. In this paper we present the initial design of ABEY 3.0

Blockchain (ABEYCHAIN) and other technical details. Briefly, our

consensus design enjoys the same consistency, liveness, transaction

finality and security guarantee. We discuss optimizations like the

frequency of rotating committee members and physical timestamp

restrictions. The primary focus of ABEYCHAIN is to advance these

concepts and to build a blockchain that is uniquely designed for the

ABEY community. We also utilize (i) data sharding and speculative

transactions, (ii) evaluation of running of smart contracts in a hybrid

cloud infrastructure and (iii) usage of existing volunteer computing

protocols for something we introduce as a compensation

infrastructure.

1. INTRODUCTION

With the surging popularity of cryptocurrencies, blockchain technology has caught

attention from both industry and academia. One can think blockchain as a shared

computing environment involving peers to join and quit freely, with the premise for a

commonly agreed consensus protocol. The decentralized nature of blockchain, together

with transaction transparency, autonomy, immutability, are critical to cryptocurrencies,

drawing the baseline for such systems. However The top earlier-designed

cryptocurrencies such as Bitcoin1 and Ethereum2 , however, have been widely

recognized as unscalable in terms of transaction rate and are not economically viable

as they require severe energy consumptions and computation power.

With the demand of Apps and platforms using public blockchain growing in real world, a

viable protocol that enables higher transaction rates is a main focus on new systems.

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 2

For example, consider a generic public blockchain that could host computationally

intensive peer to peer gaming applications with a very large user base. If such a

chainalso hosts smart contracts for Initial Coin Offerings (ICO) in addition toother

applications, we could readily expect a huge delay in transaction confirmation times.

There are other models like delegated mechanism of Proof of Stake (PoS) and Hybrid

Consensus. ABEY 2.0 adopts hybrid consensus which incorporates a modified form of

PBFT (Practical Byzantine Fault Tolerance)3 and Proof of Work (PoW) consensus.

ABEY 3.0 is phasing out the energy-intensive portion of its validation mechanism known

as proof-of-work (PoW), to a much more energy-efficient process known as “staking,” or

more specifically, Proof-of-Stake (PoS). The PoS protocol with validators could although

facilitate high throughput, and is much more energy-efficient than PoW. The PoS

protocol ensures safety as long as only one third of the validators in the system are

intentionally or unintentionally malicious adversaries, at a time.

In this Paper, we propose ABEYCHAIN 3.0, a PoS Protocol which validators archive

consensus using a modified form of PBFT (Practical Byzantine Fault Tolerance)4The

PoS consensus ensures incentivization and committee selection while the validators act

as a highly performance consensus with capabilities like instant finality with high

throughput, transaction validation, rotating committee for fair trade economy and a

compensation infrastructure to deal with non-uniform infrastructure. The protocol allows

it to tolerate corruptions at a maximum of about one third of peer nodes.

2. BACKGROUND

The core strength of this proposal lies in the recognition of the theorems of DPoS. The

use of DailyBFT as committee members allows for the rotating committee feature which

provides for better fairness on the consensus validating peers.

2.1. Related Works. In PoS systems, the native token stores value and voting power

rather than just value as in PoW systems. PoS protocol achieves Sybil resistance in a

BFT way while consuming a fraction of the energy.Rather than relying on computers

racing to generate the appropriate hash, the act of locking up tokens, or staking,

determines participation in a PoS protocol. This mechanism attempts to reduce the

computational cost of PoW schemes by selecting validators in proportion to their

quantity of staked holdingst. PoS-based blockchains come with notable benefits and

considerations that differ from PoW.

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 3

3. CONSENSUS

Our consensus design is a PoS consensus, with several modifications and

improvements in order to tailor for the application scenarios that we focus on. In this

section we will assume the readers are familiar with the details of the PoS consensus

protocol.

3.1. Design Overview. In this subsection we will present an overview of our consensus

protocol. In this protocol, we use the same abstract symbols and definitions in Hybrid

Consensus5. In the following part of this section, we will explain our modifications and

further constructs .

Our adversary model follows the assumptions in6 where adversaries are allowed to

mildly adaptively corrupt any node, while corruptions do not take effect immediately. In

the next version of the Yellow Paper we will formally explain our modifications in

Universal Composability model7.

Note that all the pseudocodes in this Yellow Paper are simplified for the sake of easy

explanations. They are not optimized for engineering.

3.2 Recap of DPoS Consensus Protocol. In this subsection, we articulate

major components and definitions from the ABEY 3.0 PoS Consensus protocol.

3.2.2. Daily offchain consensus protocol. In DailyBFT, committee members run an

offchain BFT instance to decide a daily log, whereas non-members count signatures

from committee members.

It extends security to committee non-members and late-spawning nodes. It carries with

it, a termination agreement which requires that all honest nodes agree on the same final

log upon termination. In DailyBFT, committee members output signed daily log hashes,

which are then consumed by the PoS Consensus protocol. These signed daily log

hashes satisfy completeness and unforgeability.

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 4

On keygen, it adds public key to list of keys. On receiving a comm signal, a conditional

election of the node as committee member happens. The environment opens up the

committee selectively.

Here is how the subprotocol works for when the node is a BFT member: - A BFT

virtual node is then forked. The BFT virtual node, denoted by BFTpk, then starts

receiving the transactions (TXs). The log completion is checked and stopped if the stop

signal has been signed off by at least a third of the initial comm distinct public keys.

During this process, a continuous “Until Done” check happens and once completion of

gossip happens at each step, all the stop log entries are removed.

Here is how the subprotocol works for when the node is not a BFT member: - On

receival of a transaction, the message is added to history and signed by a third of the

initial comm distinct public keys.

The signing algorithm tags each message for the inner BFT instance with the prefix “0”,

and each message for the outer DailyBFT with the prefix “1” to avoid namespace

collision.

3.2.3. The mempool subprotocol. Initializes TXs with 0 and keeps track of incoming

transactions with a Union set. On receiving a propose call, it adds the transactions to

block and communicates with gossip protocol. It also supports query method to return

confirmed transactions. By keeping track of transactions in a set, it purges the ones

already confirmed.

3.2.4. Main Consensus protocol. A newly spawned node with an implicit message

routing that carries with it history of the transcripts sent and received. This interacts with

the following components - Mempools, Preprocess, Daily Offchain Consensus, and on

chain validation.

3.3. Variant Day Length and Committee Election. BFT committee instances are

switched after a fixed period of time (with the chain as a logical clock)8. A new

committee is formed simply by the miners of the latest csize number of blocks inside

SnailChain. In our consensus design, we want to exploit the intuition that, if the

committee behaves well, we don’t have to force them to switch, and therefore the

overhead of switching committee could be prevented in some situations. On the other

hand, this will raise difficulty for new nodes to get elected as a committee member if the

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 5

previous committee keeps good records. Therefore, we still keep the design of forcibly

switching the committee every fixed amount of time, but with a much lower frequency,

(for example, the committee will be switched every K days). On the other hand, we

incorporate the idea of authenticated complaints from Thunderella9where the SlowChain

can be used as the evidence of misbehavior by BFT committee members. That is,

whenever committee misbehavior is detected from the SnailChain, the next day starting

point (not necessarily the K-th day) will trigger a forced switch.

3.4. Application Specific Design. Our consensus design is aware of application

specific requirements and tailors for them, under the conditions that the consistency,

liveness and security properties are not compromised.

3.4.1. Physical Timing Restriction. Conventional consensus design by default allow

miners /committee members / leaders to re-order transactions within a small timing

window. This raises a problem for some decentralized applications such as commercial

exchanges where the trading fairness requires the timing order between transactions to

be carefully preserved, or otherwise malicious (or, even normal rational) participants will

have the incentive to re-order transactions, or even insert its own transactions, to gain

extra profits. And this incentive will be magnified under high throughput.

And what is even worse, is that such malicious re-ordering is impossible to distinguish

because naturally network latency will cause re-ordering and such latencies can only be

observed by the receiver itself and therefore it has the final evidence of numbers

regarding network latency.

To support decentralized advertisement exchanges, we try to reduce such problems by

incorporating one more restriction called sticky timestamp. More specifically, with a

heuristic parameter TΔ, when proposing transactions, we require the client to put a

physical timestamp Tp inside the metadata of the transaction, and this physical

timestamp is signed together with the other parts of the transaction. Later when

validators inside BFT verify the transaction, it will do the following extra checks as

shown in Algorithm 1.

At the stage of materializing logs inside BFT, the leader will sort the transaction batch

according to its physical timestamps and break ties (though very unlikely) with the

sequence number. Actually, this step is not necessary because we can enforce the

order later in the evaluation and verification. But for simplicity, we put it here.

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 6

This set of modifications give us several extra properties:

1) The order of transactions from any node Ni is internally preserved according

to their physical timestamps. Thus, the sequence order of these transactions

is strictly enforced. This will get rid of the possibility of some malicious re-

ordering that involves two transactions from the same node.

2) The order within a batch of transactions output by the BFT committee is

strictly ordered by timestamps.

3) Nodes cannot manipulate fake physical timestamps because of the timing

window restriction.

One obvious disadvantage of this modification will be the reduction in terms of

throughput due to aborting transactions when the parameter TΔ is inappropriate for the

varying network latency. Another disadvantage is that the BFT committee members are

still allowed to lie about their local time and reject certain transactions. However,

committee members can reject certain transactions anyway. But honest nodes could

potentially reject ignorant transactions because of their unsynchronized clocks. This

issue can be reduced by adding restrictions on the eligibility of the BFT committee.

Later we will see that to get into the committee, the nodes should present evidence of

synchronized clocks.

Algorithm 1: Extra Verification Regarding Physical Timestamp

Data: Input Transaction TX

Result: A Boolean value that indicates whether the verification is passed

1 current_time Time.Now();

2 if | current_time - TX.Tp| > TΔ then

3 | return false;

 | // if the time skew is too large, reject TX.

4 var txn_history = new static dictionary of lists;

5 if txn_history[TX.from] == NULL then

6 | txn_history[TX.from] == [TX];

7 else

8 | if txn_history[TX.from][-1]. Tp - TX.T p > 0 then

9 | | return false;

 | | // To make sure the transactions from the same node preserve timing order.

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 7

10| else

11| | txn_history[TX.from].append(TX);

12| | return true;

FIGURE 1. Pseudo-Code for Extra Verification

3.5. Computation and Data Sharding, and Speculative Transaction Execution. In

this subsection we introduce our sharding scheme.

An important modification over the original Hybrid Consensus is that we add

computation and data sharding support for it. And even more, first of its kind, we design

a speculative transaction processing system over shards. The idea is clear, In Hybrid

Consensus, the DailyBFT instances are indexed into a deterministic sequence DailyBFT

[1 . . . R]. We allow multiple sequences of DailyBFT instances to exist at the same time.

To be precise, we denote the t-th DailyBFT sequence by shard St. For simplicity, we fix

the number of shards as C. Each DailyBFT is a normal shard. Besides C normal shards,

we have a primary shard Sp composed of csize nodes.

The job of the primary shard is to finalize the ordering of the output of normal shards as

well as implementing the coordinator in distributed transaction processing systems. And

the normal shards, instead of directly connecting with Hybrid Consensus component,

submit logs to the primary shard, which in turn talks to Hybrid Consensus.

We do not allow any two shards (either normal or primary) to share common nodes,

which can be enforced in the committee selection procedure. The election of multiple

shards is similar to the election procedure described in Section 3.3.

We partition the state data (in terms of account range) uniformly into C shards. This will

make sure that every query to the corresponding shard will return a consistent state.

Since we are going to include meta data for each data unit, we split data into units of

data sectors and assign each data sector with an address. We have a mapping from

data position to data sector address. For simplicity, from now on, we only discuss at the

level of data sectors. Each data sector DS[addr] has metadata of rts, wts, readers,

writers.

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 8

We assume the partition principle is public and given the address addr we can get its

host shard by calling the function host(addr).

Notice that if we treat every normal shard (when the number of adversaries is not large)

as a distributed processing unit, we can incorporate the design of logical timestamps10in

distributed transaction processing systems11, which will empower the processing of

transactions. Here we utilized a simplified version of MaaT where we don’t do auto-

adjustment of other transaction’s timestamps.

For normal shards, it acts exactly as described in DailyBFT except the following

changes to make it compatible for parallel speculative execution.

For the primary shard, it collects output from all the normal shards. Notice that, the data

dependency of transactions can be easily inferred by their metadata. And a fact is that,

if a transaction visits multiple remote shards, it will leave traces in all the shards

involved.

When the primary shard receives a batch of txns from a shard, it will check if it has

received from all the shards transactions within this batch. If after certain timeout it has

not received transactions from a particular batch, it means that batch has failed. In this

case, a whole committee switch will be triggered at the next day starting point. After

receiving all the shards’ logs, the primary shard sorts the transactions based on their

commit timestamps (if some transaction has earlier batch number, it will be considered

as the first key in the sorting, however, if its physical timestamp violates the timestamps

from many shards, we decide that batch as invalid and all the transactions inside that

batch are aborted). After sorting, the primary shard filters all the transactions and keeps

a longest non-decreasing sequence in terms of physical timestamps. Out the log to the

DPoS Consensus component as that day’s log.

There are still many optimization spaces. One certain con is that the confirmation time

in this design is not instant.

4. SMART CONTRACTS IN VIRTUAL MACHINES

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 9

4.1. Design Rationale. Since ours is a hybrid model, we’ll take the liberty of exploring

this design space a little bit further. Let us consider the possibility of a hybrid cloud

ecosystem.

A basic problem people have faced is the kind of crude mathematical notations followed

in Ethereum’s Yellow Paper12. We therefore hope to follow something like KEVM Jello

Paper13 to list out the EVM and AVM (described in 4.2) specifications.

4.1.1. What about containers instead of VMs? One of the blockchain frameworks out

there that come as close to this idea as possible, is Hyperledger’s Fabric framework14. If

one sets out to convert Fabric’s permissioned nature into permissionless, one of the

foremost challenges would be to solve the chaincode issue. What this means is while it

is possible to keep a chaincode/smart contract in a single container, it is not a scalable

model for a public chain. Having such a model for public chain means having to run

several thousand containers, per se, several thousand smart contracts on a single node

(because each node maintains a copy).

There have been attempts from the community being able to run a certain maximum

number of containers per node. The limit currently is 100 pods per node, per se,

approximately 250 containers per node, as illustrated in Kubernetes container

orchestration platform15and Red Hat’s Openshift Container Platform 3.9’s Cluster

Limits16. Even with latest storage techniques like brick multiplexing17, the max possible

value (say MAX CONTR) of containers could not possibly reach (at least right now)

1000.

Algorithm 2: Sharding and Speculative Transaction Processing

1 On BecomeShard:

2 Initialize all the state data sectors:

 lastReaderTS = -1, lastWriterTS = -1, readers = [], writers = []

3 With transaction TX on shard Si:

4 On Initialization:

5 TX.lowerBound = 0;

6 TX.upperBound = +∞;

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 10

7 TX.state = RUNNING;

8 TX.before = [];

9 TX.after = [];

10 TX.ID = rand;

11 On Read Address(addr):

12 if host(addr) == Si then

13 | Send readRemote(addr) to itself;

14 else

15 | Broadcast readRemote(addr, TX.id) to host(addr);

16 | Async wait for 2f + 1 valid signed replies within timeout To;

17 | Abort TX when the timeout ticks;

18 Let val, wts, IDs be the majority reply;

19 TX.before.append(IDs);

20 TX.lowerBound = max(TX.lowerBound, wts);

21 return val;

22 On Write Address(addr):

23 if host(addr) == Si then

24 | Send writeRemote(addr) to itself;

25 else

26 | Broadcast writeRemote(addr, TX.id) to host(addr);

27 | Async wait for 2f + 1 valid signed replies within timeout To;

28 | Abort TX when the timeout ticks.

29 Let rts, IDs be the majority reply;

30 TX.after.append(IDs) TX.lowerBound = max(TX.lowerBound, rts);

31 return;

32 On Finish Execution: for every TX’inTX.before do

33 | TX.lowerBound = max(TX.lowerBound, TX’.upperBound);

34 for every TX’inT X.after do

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 11

35 | TX.upperBound = min(TX.upperBound, TX’.lowerBound);

36 if TX.lowerBound ¿ TX.upperBound then

37 | Abort TX;

38 Broadcast Precommit(T X.ID, |TX.lowerBound+TX.upperBound/2|) to all the previous

remote

 shards which T X has accessed;

 // If TX.upperBound = ∞, we can set an arbitrary number larger than

 TX.lowerBound.

39 On receive readRemote(addr, ID):

40 if host(addr) == Si then

41 | DS[addr].readers.append(ID);

42 | return DS[addr].value, DS[addr].wts, DS[addr].writers;

43 else

44 | Ignore

45 On receive writeRemote(addr, ID):

46 if host(addr) == Si then

47 | DS[addr].writers.append(ID);

48 | Write to a local copy;

49 | return DS[addr].rts, DS[addr].readers;

50 else

51 | Ignore

Algorithm 3: Sharding and Speculative Transaction Processing (cont.)

1 On receive Precommit(ID, cts):

2 Look up TX by ID;

3 if Found and cts not in [TX.lowerBound, TX.upperBound] then

4 | Broadcast Abort(ID) to the sender’s shard.;

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 12

5 TX.lowerBound = TX.upperBound = cts;

6 For every data sector DS[addr] TX reads, set DS[addr].rts = max(DS[addr].rts, cts);

7 For every data sector DS[addr] TX writes, set DS[addr].wts = max(DS[addr].wts, cts);

8 Broadcast Commit(ID, batchCounter) to the sender’s shard.;

 // batchCounter is a number which increases by 1 whenever the shard submit a batch

of log to the primary shard.

9 On receive 2f + 1 Commit(ID, batchCounter) from each remote shards which T X

has

 accessed:

10 TX.lowerBound = TX.upperBound = cts;

11 For every data sector DS[addr] TX reads, set DS[addr].rts = max(DS[addr].rts, cts);

12 For every data sector DS[addr] TX writes, set DS[addr].wts = max(DS[addr].wts, cts);

13 Mark TX committed;

14 Let TX.metadata = [ShardID, batchCounter];

15 On output log

16 Sort TX’s based on their cts. Break ties by physical timestamp.

This issue could further be looked up in the discussions on Kubernetes issues GitHub

page18around workload-specific limits that usually determine the maximum pods per

node. People who wish to scale containers usually prefer horizontal scaling rather than

a vertical scaleup19, as the latter significantly increases complexity of design decisions.

And there’s no one-size-fits-them-all rule for a cluster scale configuration as that entirely

depends on the workload, which being more in our case due to its decentralized nature,

isn’t very convincing for taking a step towards scaling this. At this point, it becomes

more of an innovation problem than a simple technical specification search. Ethereum

currently has > 1000 smart contracts deployed. Therefore, this would be nothing but a

crude attempt at optimizing the container ecosystem’s design space.

Now let us expand a bit on the container scenario. Given the above crisis, a possible

solution is to use container in a serverless architecture. But consider a scenario where >

2000 contracts are online and the concurrent requests, i.e., invocation calls to

chaincode (a moving window) at a time exceed MAX CONTR value, we then face the

same problem all over again. Therefore, it is only advisable to add a throttling rate limit

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 13

on the max concurrent requests. This severely limits the Transactions Per Second from

the consensus, by design. Engineering should not be a bottleneck to what could be

achievable alternatively. Therefore, we choose to stick to EVM design, although a bit

modified for our purpose.

4.2. ABEY Chain Virtual Machine (AVM). A typical example in this space would be

that of the Ethereum Virtual Machine (EVM)20, which tries to follow total determinism, is

completely optimized and is as simple as it gets, to make incentivization a simple step

to calculate. It also supports various features like off-stack storage of memory, contract

delegation and invocation value storage.

We would reuse the EVM specifications for the SnailChain, but add a new specification

for AVM in the next version of this Yellow Paper, after careful consideration of the

design rationale similar to EVM, deriving the stack-based architecture utilizing the

Keccak-256 hashing technique and the Elliptic-curve cryptography (ECC) approach.

The ABEYCHAIN infrastructure will utilize a combination of EVM and another EVM-like

bytecode execution platform for launching smart contracts. We choose to use one VM

for PBFT, embedded within each full node, so they could manage invocation calls on

per-need basis.

The AVM backs the DailyBFT powered chains, which interact with the following

components:

• re-using some of the concepts from tendermint, like the ABCI (Application Block

Chain Interface) which offers an abstraction level as means to enable a

consensus engine running in one process to manage an application state running

in another.

• A different consensus engine pertaining to DailyBFT chain,

• A permissioned Ethereum Virtual Machine

• An RPC gateway, which guarantees (in a partially asynchronous network)

transaction finality

#TODO - formally define transition states of AVM, smart contracts deployment strategy

and a way to deploy permissioned VM onto a permissionless chain.

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 14

5. BLOCKS, STATE, AND TRANSACTIONS

5.1. Block and committee signatures

The block of ABEY 3.0 Chain , which mainly contains the transactions and smart

contracts, is generated by the PoS committee when they reach a consensus. Similar to

Ethereum block, fast block provides TxHash, Root, ReceiptHash for other non-members

to verify transactions included at fast block body. Different from Ethereum block, the

block of ABEY Chain includes the committee information and signs from validators.

The commitInfo field includes all the committee members, it presents at the first block of

every epoch.

The signs filed includes the parent block signatures and this block signatures from

validators, but only the parent block signatures will be calculated as SignHash in block

header.

5.2. Parallel transaction execution As of today, the multi-core processor architecture

has become a major trend in the industry, as parallelization technology can fully utilize

the potential of CPUs. ABEYCHAIN’s Parallelizing Transaction Execution mechanism

uses the advantages of multi-core processors to the fullest by enabling transactions in

blocks to be executed in parallel as much as possible.

The traditional transaction execution mechanism works mostly as such: transactions are

read one by one from the block. After each transaction is executed, the state machine

will move to the next state until all transactions are executed sequentially.

If two transactions have no actual dependency between each other but are deemed so,

this will cause unnecessary loss of performance efficiency. On the contrary, if the two

transactions rewrite the state of the same account but are executed in parallel, the final

state of the account may be uncertain. Therefore, the determination of dependency is

an important issue that affects performance and even indicates whether the blockchain

can work normally.

We can easily tell whether two transactions are dependent by observing the address of

the sender and receiver, such as the following example transactions: A→B, C→D,

D→E. Here, you can see that transaction D→E depends on the result of transaction

C→D, but transaction A→B has little relationship with the other two transactions,

therefore can be executed in parallel.

This analysis is correct in a blockchain that only supports simple transactions, but it may

not be as accurate once it is placed in a Turing-complete blockchain that runs smart

contracts – because it is impossible to know exactly what is in the transaction contract

written by the user. Transaction A->B seems to have nothing to do with the account

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 15

status of C and D. However, in reality party A is a special account. When each

transaction is transferred through A’s account, transaction fees must be deducted from

party C’s account first. In this scenario, all three transactions are actually related, so

they cannot be executed in parallel.

In order to resolve this type of situation, we adopt a trial and error method. Specific

steps are as such:

1. Preparing: convert all transactions to “message” type;

2. Grouping: group transactions according to associated address;

3. Executing: execute each transaction group in parallel;

4. Check for conflicts: check whether the transaction groups are in conflict according

to returned results. If there is a conflict, roll back the conflicting transactions, then

regroup and re-execute.

5. Collect results: collect the execution results of each group, update the tree, and

generate the state root

With the above method, transaction-related issues in parallel transactions can be

resolved. Of course, inaccurate initial grouping, transaction rollback may still cause

performance inefficiency at times. But in most cases, transactions are irrelevant. It is

feasible to accurately group and execute transactions in parallel to improve transaction

execution efficiency.

6. INCENTIVE DESIGN

The Proof of work protocol have a proven track record of attracting computational

resources at an unprecedented rate. While existing PoW networks such as Bitcoin and

Ethereum have been successful in their own right, the computational resources they

attracted have been nothing more than very powerful hash calculators. They cost a lot

of electricity to run and produce nothing useful.

In this section we will present a concept of compensation infrastructure in order to

balance the workload of PoS committee members and non-member full nodes, where

participating resources can be redirected to do useful things, such as scaling

transactions-per-second (referred to as “TPS” from here on) and providing on-chain

data storage.

Ethereum gas price is determined by a spot market with no possibility of arbitrage,

similar to that of electricity spot market studied in21]. We consider this market to be

incomplete, and therefore, fundamental theorem of asset pricing does not apply22. Thus,

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 16

the underlying gas price will follow a shot-noise process, that is known for its high

volatility. We introduce a “gas marketplace” where gas will be traded as futures, and this

market is complete in the infinitesimal limit. This is expected to significantly reduce gas

price volatility compared to Ethereum.

The following subsections will be talking about each component of the incentive design

in detail.

6.1. Gas fee and sharding. Gas price is traded in a futures market, where the futures

contract is manifested by a smart contract. Specifically, the contract will be executed as

follows.

• Party A agree to pay party B xxx ABEY, while party B promises to execute party

A’s smart contract, between time T0 and T1, that cost exactly 1 gas to run.

• Party B will contribute xxx ABEY to a pool corresponding to the committee C that

executed party A’s smart contract. This is called the gas pool.

• Members of C will receive an equal share of the pool and return an average cost

per gas µ for the pool.

• If B contributed less than µ, she must make up for the difference by paying

another party who contributed more than µ. If B contributed more than µ, she will

receive the difference from another party.

Under this scheme, liquidity providers are rewarded when they correctly anticipate

network stress, and hence creating a complete market in the infinitesimal limit. Price

volatility are absorbed by the averaging mechanism in the gas pool making the price

itself a good indicator of network stress.

Our intention to ensure gas price is traded roughly within a predetermined interval.

Hence, if the moving average price sustain above a certain threshold, a new PBFT

committee is spawned through a quantum appearance process.

On the other hand, if the moving average price sustain below a certain threshold, an

existing PBFT committee will not be given a successor after it finished serving its term.

The proportion of mining reward will be distributed as follows. Let n be the number of

PBFT committee running at a certain instance, and α > 1. Proportion of mining reward

going to PBFT nodes is equal to n/α +n, and PoW nodes α/α +n. This is to reflect that in

later stages of the chain, new nodes are incentivized to contribute to the blockchain’s

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 17

overall TPS, hence ensuring continued scalability of the chain. The parameter ↵

represent the number of PBFT committees when mining reward is divided 50-50.

Treating all shards as equivalent of each other in terms of network and CPU bandwidth

could produce skewed results, with inconsistent TPS, or worse, sometimes cross

timeout limits, while ordering of transaction takes place from the Primary shard. To

tackle this, we propose a compensation infrastructure, that works along the lines of

Berkeley Open Infrastructure for Network Computing. There has been a previous

attempt in this area from Gridcoin23and Golem network24.

Gridcoin’s distributed processing model relies pre-approved frameworks to the like of

Berkeley Open Infrastructure for Network Computing (BOINC)25, an opensource

distributed volunteer computing infrastructure, heavily utilized within cernVM26 in turn,

harnessed by the LHC@Home project27 A framework like this has to tackle non-uniform

wealth distribution over time. On the other hand, Golem is another great ongoing project

with concrete incentivization scheme, which would be used as an inspiration for

compensation infrastructure’s incentivization methodology. However, keeping in mind, a

widely known problem is that a blockchain powered volunteer computing based

rewarding model could easily fall prey to interest inflation if the design lacks a decent

incentive distribution scheme over time. So to speak, an increasing gap between initial

stake holders minting interest due to beginner’s luck (algorithmic luck) and the

contributors joining late, could thence be found fighting for rewards from smaller

compensation pools that further condense.

Depending on the kinds of transactions and whether we’d need decentralized storage

for some of the smart contracts, we propose the use of a hybrid infrastructure that

utilizes BOINC and IPFS/Swarm, alongside of EVM and AVM. This would make use of

Linux Containers to deal with isolation of resources and we hope to expand on this

section in the next version of this Yellow Paper.

7. FUTURE DIRECTION

Even after optimizations to the original ABEY 3.0 PoS Consensus, we acknowledge

various optimizations possible on top of what was proposed in this paper. There are

following possibilities:

• Improving timestamp synchronization for all nodes, with no dependency on

centralized NTP servers.

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 18

• Detailed incentivization techniques for compensation infrastructure, so heavy

infrastructure investors don’t suffer from ’left-out’, ’at a loss’ problem

• Sharding techniques with replica creation to minimize the transaction set

rejection from the pos committee.

• Addition of zero knowledge proof techniques for privacy.

• Hybrid infrastructure of AVM and Linux container ecosystem.

• Sections for Virtual Machine Specification, Binary Data Encoding Method,

Signing Transactions, Fee schedule and Ethash alternative.

8. CONCLUSIONS

We have formally defined ABEY 3.0 PoS Consensus protocol and its implementation

along with plausible speculations in the original proposal. In this draft, we have

introduced various new concepts some of which we will detail in the next version very

soon.

• The PoS committee is a rotating one, preventing corruption in a timely manner

• The PoS committee is responsible for transaction validation, and staking is

responsible for choosing/electing the committee members according to some

rules we’ve derived and re-defined.

• The new VM (which we call ABEY Chain Virtual Machine - AVM), we’ve

surmised, could be inspired from the EVM, but with different block states and

transaction execution flows, transaction parallel processing will be adopted.

• The incentivization model needs to be re-worked such that it is based on of AVM.

• We would eventually support sharding for the PoS committee nodes, for

scalability.

• We address the storage issue for high TPS public chains and introduced a

method that seamlessly merge transaction process with decentralized data

storage.

• A compensation infrastructure, which accounts for node configuration non-

uniformity (different CPU/memory/network bandwidth in the node pool), would

eventually be a part of the consensus, thus speeding up transactions.

• The smart contracts execution would thus only happen in AVM (BFT node).

1 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. URL http://bitcoin.org/bitcoin.pdf, 2008.
2 V. Buterin. Ethereum white paper, 2014. URL https://github.com/ethereum/wiki/wiki/White-Paper.

3 M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99, pages 173–186,
1999.
4 Id at 173 – 186.

https://github.com/ethereum/wiki/wiki/White-Paper

ABEY: MULTI-LAYERED BLOCKCHAIN FOR HIGH-VOLUME TRANSACTIONS

 19

5 E. Androulaki, A. Barger, and V. e. a. Bortnikov. Hyperledger fabric: A distributed operating system for
permissioned blockchains. URLhttps://arxiv.org/pdf/1801.10228v1.pdf, 2018.
6 R. Pass and E. Shi. Hybrid consensus: Efficient consensus in the permissionless model. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 91. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.
7 R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 136–145.
IEEE, 2001.
8 R. Pass and E. Shi. Hybrid consensus: Efficient consensus in the permissionless model. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 91. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017
9 R. Pass and E. Shi. Thunderella: blockchains with optimistic instant confirmation, 2017.
10 X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. Tictoc: Time traveling optimistic concurrency control. In
Proceedings of the 2016 International Conference on Management of Data, pages 1629–1642. ACM,
2016.
11 H. A. Mahmoud, V. Arora, F. Nawab, D. Agrawal, and A. El Abbadi. Maat: Effective and scalable
coordination of distributed transactions in the cloud. Proceedings of the VLDB Endowment, 7(5):329–340,
2014.
12 G. Wood. Ethereum: A secure decentralized generalized transaction ledger. URL

https://ethereum.github.io/yellowpaper/paper.pdf, 2018.
13 E. Hildenbrandt, M. Saxena, and X. e. a. Zhu. Kevm: A complete semantics of the ethereum virtual

machine. URL https://www.ideals.illinois.edu/handle/2142/97207, 2017.
14 E. Androulaki, A. Barger, and V. e. a. Bortnikov. Hyperledger fabric: A distributed operating system for
permissioned blockchains. URLhttps://arxiv.org/pdf/1801.10228v1.pdf, 2018.
15 Kubernetes: Building large clusters. URL https://kubernetes.io/docs/admin/cluster-large/.
16 Red hat openshift container platform’s cluster limits. URL
https://access.redhat.com/documentation/enus/openshift container platform/3.9/html/scaling and
performance guide/.
17 Container-native storage for the openshift masses. URL
https://redhatstorage.redhat.com/2017/10/05/containernative-storage-for-the-openshift-masses/.
18 Increase maximum pods per node: GitHub/kubernetes/kubernetes#23349. URL
https://github.com/kubernetes/kubernetes/issues/23349.
19 Deploying 2048 openshift nodes on the cncf cluster. URL https://blog.openshift.com/deploying-2048-
openshift-nodes-cncf-cluster/.. See also Kubernetes scaling and performance goals. URL
https://github.com/kubernetes/community/blob/master/sigscalability/goals.md.

20 G. Wood. Ethereum: A secure decentralized generalized transaction ledger. URL

https://ethereum.github.io/yellowpaper/paper.pdf, 2018.
21 T. Schmidt. Modelling energy markets with extreme spikes. In: Sarychev A., Shiryaev A., Guerra M.,

Grossinho M..R. (eds) Mathematical Control Theory and Finance, pp 359-375. Springer, Berlin,
Heidelberg, 2008.
22 W. Delbaen, Freddy; Schachermayer. A general version of the fundamental theorem of asset pricing.

Mathematische Annalen. 300 (1): 463–520., 1994.
23 Gridcoin whitepaper: The computation power of a blockchain driving science and data analysis. URL

https://www.gridcoin.us/assets/img/whitepaper.pdf.
24 T. G. team. The golem project:URL 2016.https://golem.network/doc/Golemwhitepaper.pdf, 2016.
25 D. P. Anderson. Boinc: A system for public-resource computing and storage. URL

https://boinc.berkeley.edu/grid paper 04.pdf.
26 J. Blomer, L. Franco, A. Harutyunian, P. Mato, Y. Yao, C. Aguado Sanchez, and P. Buncic. Cernvm– a

virtual software appliance for lhc applications. URL http://iopscience.iop.org/article/10.1088/1742-
6596/219/4/042003/pdf, 2017.
27 D. e. a. Lombra˜na Gonz´alez. Lhchome: a volunteer computing system for massive numerical

simulations of beam dynamics and high energy physics events. URL
http://inspirehep.net/record/1125350/.

